Literature

  1. Zhou, Y.; Yan, B., Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry. Nanoscale 2015, 7 (9), 4063-4069.
  2. Zhao, S. N.; Li, L. J.; Song, X. Z.; Zhu, M.; Hao, Z. M.; Meng, X.; Wu, L. L.; Feng, J.; Song, S. Y.; Wang, C.; Zhang, H. J., Lanthanide Ion Codoped Emitters for Tailoring Emission Trajectory and Temperature Sensing. Adv Funct Mater 2015, 25 (9), 1463-1469.
  3. Yi, X.; Chen, Z. T.; Ye, S.; Li, Y.; Song, E. H.; Zhang, Q. Y., Multifunctionalities of near-infrared upconversion luminescence, optical temperature sensing and long persistent luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+ and their potential coupling. Rsc Adv 2015, 5 (61), 49680-49687.
  4. Xu, H.; Gao, J. K.; Wang, J. P.; Qian, X. F.; Song, R. J.; Cui, Y. J.; Yang, Y.; Qian, G. D., Surfactant-thermal method to synthesize a new Zn(II)-trimesic MOF with confined Ru(bpy)(3)(2+) complex. J Solid State Chem 2015, 226, 295-298.
  5. Wei, Y. Q.; Sa, R. J.; Li, Q. H.; Wu, K. C., Highly stable and sensitive LnMOF ratiometric thermometers constructed with mixed ligands. Dalton T 2015, 44 (7), 3067-3074.
  6. Wang, Z. P.; Ananias, D.; Carne-Sanchez, A.; Brites, C. D. S.; Imaz, I.; Maspoch, D.; Rocha, J.; Carlos, L. D., Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying. Adv Funct Mater 2015, 25 (19), 2824-2830.
  7. Wang, X. M.; Fan, R. Q.; Wang, P.; Qiang, L. S.; Yang, Y. L.; Wang, Y. L., Auxiliary ligand-assisted two novel one-dimensional indium coordination polymers: Synthesis, crystal structures and photoluminescence characterization effected by solvent and temperature. Inorg Chem Commun 2015, 51, 29-35.
  8. Wang, T. R.; Yu, X. Y.; Li, Z. Q.; Wang, J.; Li, H. R., Multi-colored luminescent light-harvesting hybrids based on aminoclay and lanthanide complexes. Rsc Adv 2015, 5 (15), 11570-11576.
  9. Wang, S. S.; Zheng, S. S.; Zhou, H.; Pan, A. L.; Wu, G. H.; Liu, J. M., Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films. Appl Phys a-Mater 2015, 121 (2), 773-777.
  10. Tong, L. L.; Li, X. P.; Hua, R. N.; Li, X. J.; Zheng, H.; Sun, J. S.; Zhang, J. S.; Cheng, L. H.; Chen, B. J., Comparative study on upconversion luminescence and temperature sensing of alpha- and beta-NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route. J Lumin 2015, 167, 386-390.
  11. Tiwari, S. P.; Mahata, M. K.; Kumar, K.; Rai, V. K., Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor. Spectrochim Acta A 2015, 150, 623-630.
  12. Tian, Y.; Tian, B. N.; Cui, C. E.; Huang, P.; Wang, L.; Chen, B. J., Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor. Rsc Adv 2015, 5 (19), 14123-14128.
  13. Tang, M. X.; Huang, Y. J.; Wang, Y.; Fu, L. M., An ytterbium complex with unique luminescence properties: detecting the temperature based on a luminescence spectrum without the interference of oxygen. Dalton T 2015, 44 (16), 7449-7457.
  14. Song, Y.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S.; Li, J. M., Au Nanorods@NaGdF4/Yb3+,Er3+ Multifunctional Hybrid Nanocomposites with Upconversion Luminescence, Magnetism, and Photothermal Property. J Phys Chem C 2015, 119 (32), 18527-18536.
  15. Shen, X.; Yan, B., Polymer hybrid thin films based on rare earth ion-functionalized MOF: photoluminescence tuning and sensing as a thermometer. Dalton T 2015, 44 (4), 1875-1881.
  16. Shen, X.; Lu, Y.; Yan, B., Lanthanide Complex Hybrid System for Fluorescent Sensing as Thermometer. Eur J Inorg Chem 2015, (6), 916-919.
  17. Shahi, P. K.; Singh, A. K.; Singh, S. K.; Rai, S. B.; Ullrich, B., Revelation of the Technological Versatility of the Eu(TTA)(3)Phen Complex by Demonstrating Energy Harvesting, Ultraviolet Light Detection, Temperature Sensing, and Laser Applications. Acs Appl Mater Inter 2015, 7 (33), 18231-18239.
  18. Savchuk, O. A.; Carvajal, J. J.; Pujol, M. C.; Barrera, E. W.; Massons, J.; Aguilo, M.; Diaz, F., Ho,Yb:KLu(WO4)(2) Nanoparticles: A Versatile Material for Multiple Thermal Sensing Purposes by Luminescent Thermometry. J Phys Chem C 2015, 119 (32), 18546-18558.
  19. Ren, M.; Brites, C. D. S.; Bao, S. S.; Ferreira, R. A. S.; Zheng, L. M.; Carlos, L. D., A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer. J Mater Chem C 2015, 3 (33), 8480-8484.
  20. Piñol, R.; Brites, C. D. S.; Bustamante, R.; Martínez, A.; Silva, N. J. O.; Murillo, J. L.; Cases, R.; Carrey, J.; Estepa, C.; Sosa, C.; Palacio, F.; Carlos, L. D.; Millán, A., Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties. ACS Nano 2015, 9 (3), 3134-3142.
  21. Pereira, A. F.; Kumar, K. U.; Silva, W. F.; Santos, W. Q.; Jaque, D.; Jacinto, C., Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers. Sensors and Actuators B: Chemical 2015, 213, 65-71.
  22. Ozawa, A.; Shimizu, A.; Nishiyabu, R.; Kubo, Y., Thermo-responsive white-light emission based on tetraphenylethylene- and rhodamine B-containing boronate nanoparticles. Chem Commun 2015, 51 (1), 118-121.
  23. Marciniak, L.; Bednarkiewicz, A.; Stefanski, M.; Tomala, R.; Hreniak, D.; Strek, W., Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd3+ to Yb3+ energy transfer. Phys Chem Chem Phys 2015, 17 (37), 24315-24321.
  24. Mahata, M. K.; Koppe, T.; Mondal, T.; Brusewitz, C.; Kumar, K.; Rai, V. K.; Hofsass, H.; Vetter, U., Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3+ nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing. Phys Chem Chem Phys 2015, 17 (32), 20741-20753.
  25. Lian, X.; Zhao, D.; Cui, Y.; Yang, Y.; Qian, G., A near infrared luminescent metal-organic framework for temperature sensing in the physiological range. Chem Commun (Camb) 2015.
  26. Li, Z.; Hou, Z.; Ha, D.; Li, H., A Ratiometric Luminescent Thermometer Co-doped with Lanthanide and Transition Metals. Chem Asian J 2015.
  27. Ge, X. Q.; Sun, L. N.; Dang, S.; Liu, J. L.; Xu, Y. X.; Wei, Z. W.; Shi, L. Y.; Zhang, H. J., Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature. Microchim Acta 2015, 182 (9-10), 1653-1660.
  28. Fu, L. L.; Fu, Z. L.; Yu, Y. N.; Wu, Z. J.; Jeong, J. H., An Eu/Tb-codoped inorganic apatite Ca-5(PO4)(3)F luminescent thermometer. Ceram Int 2015, 41 (5), 7010-7016.
  29. Fan, X.; Freslon, S.; Daiguebonne, C.; Polles, L. L.; Calvez, G.; Bernot, K.; Yi, X.; Huang, G.; Guillou, O., A family of lanthanide-based coordination polymers with boronic Acid as ligand. Inorg Chem 2015, 54 (11), 5534-46.
  30. Cui, Y. J.; Song, T.; Yu, J. C.; Yang, Y.; Wang, Z. Y.; Qian, G. D., Dye Encapsulated Metal-Organic Framework for Warm-White LED with High Color-Rendering Index. Adv Funct Mater 2015, 25 (30), 4796-4802.
  31. Cui, Y. J.; Song, R. J.; Yu, J. C.; Liu, M.; Wang, Z. Q.; Wu, C. D.; Yang, Y.; Wang, Z. Y.; Chen, B. L.; Qian, G. D., Dual-Emitting MOF superset of Dye Composite for Ratiometric Temperature Sensing. Adv Mater 2015, 27 (8), 1420-+.
  32. Cui, Y.; Zhu, F.; Chen, B.; Qian, G., Metal-organic frameworks for luminescence thermometry. Chem Commun (Camb) 2015, 51 (35), 7420-31.
  33. Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G., Dual-emitting MOF supersetdye composite for ratiometric temperature sensing. Adv Mater 2015, 27 (8), 1420-5.
  34. Chen, D. Q.; Wang, Z. Y.; Zhou, Y.; Huang, P.; Ji, Z. G., Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior. J Alloy Compd 2015, 646, 339-344.
  35. Chen, D. Q.; Wan, Z. Y.; Zhou, Y.; Zhou, X. Z.; Yu, Y. L.; Zhong, J. S.; Ding, M. Y.; Ji, Z. G., Dual-Phase Glass Ceramic: Structure, Dual-Modal Luminescence, and Temperature Sensing Behaviors. Acs Appl Mater Inter 2015, 7 (34), 19484-19493.
  36. Ceron, E. N.; Ortgies, D. H.; Del Rosal, B.; Ren, F.; Benayas, A.; Vetrone, F.; Ma, D.; Sanz-Rodriguez, F.; Sole, J. G.; Jaque, D.; Rodriguez, E. M., Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv Mater 2015, 27 (32), 4781-7.
  37. Carrasco, E.; del Rosal, B.; Sanz-Rodríguez, F.; de la Fuente, Á. J.; Gonzalez, P. H.; Rocha, U.; Kumar, K. U.; Jacinto, C.; Solé, J. G.; Jaque, D., Intratumoral Thermal Reading During Photo-Thermal Therapy by Multifunctional Fluorescent Nanoparticles. Adv Funct Mater 2015, 25 (4), 615-626.
  38. Benayas, A.; Ren, F.; Carrasco, E.; Marzal, V.; del Rosal, B.; Gonfa, B. A.; Juarranz, Á.; Sanz-Rodríguez, F.; Jaque, D.; García-Solé, J.; Ma, D.; Vetrone, F., PbS/CdS/ZnS Quantum Dots: A Multifunctional Platform for In Vivo Near-Infrared Low-Dose Fluorescence Imaging. Adv Funct Mater 2015, n/a-n/a.
  39. Benayas, A.; del Rosal, B.; Pérez-Delgado, A.; Santacruz-Gómez, K.; Jaque, D.; Hirata, G. A.; Vetrone, F., Nd:YAG Near-Infrared Luminescent Nanothermometers. Advanced Optical Materials 2015, 3 (5), 687-694.
  40. Balabhadra, S.; Debasu, M. L.; Brites, C. D. S.; Nunes, L. A. O.; Malta, O. L.; Rocha, J.; Bettinelli, M.; Carlos, L. D., Boosting the sensitivity of Nd3+-based luminescent nanothermometers. Nanoscale 2015, 7 (41), 17261-17267.
  41. Ananias, D.; Paz, F. A. A.; Yufit, D. S.; Carlos, L. D.; Rocha, J., Photoluminescent Thermometer Based on a Phase-Transition Lanthanide Silicate with Unusual Structural Disorder. J Am Chem Soc 2015, 137 (8), 3051-3058.
  42. Ananias, D.; Paz, F. A.; Yufit, D. S.; Carlos, L. D.; Rocha, J., Photoluminescent thermometer based on a phase-transition lanthanide silicate with unusual structural disorder. J Am Chem Soc 2015, 137 (8), 3051-8.
  43. Zou, H.; Wang, X. S.; Hu, Y. F.; Zhu, X. Q.; Sui, Y. X.; Song, Z. T., Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15 ferroelectric materials. Aip Adv 2014, 4 (12).
  44. Zhang, H. R.; Xue, Z. P.; Lei, B. F.; Dong, H. W.; Zhang, H. M.; Deng, S. Q.; Zheng, M. T.; Liu, Y. L.; Xiao, Y., A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors. Opt Mater 2014, 36 (11), 1802-1807.
  45. Zhan, C.; Ou, S.; Zou, C.; Zhao, M.; Wu, C. D., A Luminescent Mixed-Lanthanide-Organic Framework Sensor for Decoding Different Volatile Organic Molecules. Anal Chem 2014, 86 (13), 6648-6653.
  46. Wang, T. R.; Li, P.; Li, H. R., Color-Tunable Luminescence of Organoclay-Based Hybrid Materials Showing Potential Applications in White LED and Thermosensors. Acs Appl Mater Inter 2014, 6 (15), 12915-12921.
  47. Wang, J. H.; Li, M.; Zheng, J.; Huang, X. C.; Li, D., A dual-emitting Cu6-Cu2-Cu6 cluster as a self-calibrated, wide-range luminescent molecular thermometer. Chem Commun (Camb) 2014, 50 (65), 9115-8.
  48. Wang, J. H.; Li, M.; Zheng, J.; Huang, X. C.; Li, D., A dual-emitting Cu-6-Cu-2-Cu-6 cluster as a self-calibrated, wide-range luminescent molecular thermometer. Chem Commun 2014, 50 (65), 9115-9118.
  49. Tang, Q.; Liu, S. X.; Liu, Y. W.; He, D. F.; Miao, J.; Wang, X. Q.; Ji, Y. J.; Zheng, Z. P., Color Tuning and White Light Emission via in Situ Doping of Luminescent Lanthanide Metal-Organic Frameworks. Inorg Chem 2014, 53 (1), 289-293.
  50. Savchuk, O. A.; Haro-Gonzalez, P.; Carvajal, J. J.; Jaque, D.; Massons, J.; Aguilo, M.; Diaz, F., Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime thermal sensing. Nanoscale 2014, 6 (16), 9727-9733.
  51. Rocha, U.; Upendra Kumar, K.; Jacinto, C.; Ramiro, J.; Caamaño, A. J.; García Solé, J.; Jaque, D., Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl Phys Lett 2014, 104 (5), 053703.
  52. Marciniak, L.; Strek, W.; Hreniak, D.; Guyot, Y., Temperature of broadband anti-Stokes white emission in LiYbP4O12: Er nanocrystals. Appl Phys Lett 2014, 105 (17).
  53. Maestro, L. M.; Zhang, Q. M.; Li, X. P.; Jaque, D.; Gu, M., Quantum-dot based nanothermometry in optical plasmonic recording media. Appl Phys Lett 2014, 105 (18).
  54. Maestro, L. M.; Haro-Gonzalez, P.; Sanchez-Iglesias, A.; Liz-Marzan, L. M.; Sole, J. G.; Jaque, D., Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles. Langmuir 2014, 30 (6), 1650-1658.
  55. Lu, Y.; Yan, B., Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal-organic frameworks. J Mater Chem C 2014, 2 (35), 7411-7416.
  56. Li, L.; Guo, C. F.; Jiang, S.; Agrawal, D. K.; Li, T., Green up-conversion luminescence of Yb3+-Er3+ co-doped CaLa2ZnO5 for optically temperature sensing. Rsc Adv 2014, 4 (13), 6391-6396.
  57. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodriguez, E. M.; Sole, J. G., Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
  58. Jaque, D.; del Rosal, B.; Rodriguez, E. M.; Maestro, L. M.; Haro-Gonzalez, P.; Sole, J. G., Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine-Uk 2014, 9 (7), 1047-1062.
  59. Han, Y. H.; Tian, C. B.; Li, Q. H.; Du, S. W., Highly chemical and thermally stable luminescent EuxTb1-x MOF materials for broad-range pH and temperature sensors. J Mater Chem C 2014, 2 (38), 8065-8070.
  60. del Rosal, B.; Sun, C.; Yan, Y.; Mackenzie, M. D.; Lu, C.; Bettiol, A. A.; Kar, K.; Jaque, D., Flow effects in the laser-induced thermal loading of optical traps and optofluidic devices. Opt Express 2014, 22 (20), 23938-23954.
  61. da Luz, L. L.; Viana, B. F. L.; da Silva, G. C. O.; Gatto, C. C.; Fontes, A. M.; Malta, M.; Weber, I. T.; Rodrigues, M. O.; Alves, S., Controlling the energy transfer in lanthanide-organic frameworks for the production of white-light emitting materials. Crystengcomm 2014, 16 (30), 6914-6918.
  62. Cui, Y. J.; Zou, W. F.; Song, R. J.; Yu, J. C.; Zhang, W. Q.; Yang, Y.; Qian, G. D., A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chem Commun 2014, 50 (6), 719-721.
  63. Cui, Y.; Zou, W.; Song, R.; Yu, J.; Zhang, W.; Yang, Y.; Qian, G., A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chem Commun (Camb) 2014, 50 (6), 719-21.
  64. Chu, T. S.; Liu, H. P.; Yang, Y. Y.; Wang, H. M.; Hu, Y. S.; Wang, Y.; Yu, M. H.; Ng, S. W., A new dinuclear terbium complex as a novel luminescence probe for detecting amines. J Photoch Photobio A 2014, 294, 38-43.
  65. Chen, X.; Essner, J. B.; Baker, G. A., Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 2014, 6 (16), 9594-9598.
  66. Zhou, S. S.; Deng, K. M.; Wei, X. T.; Jiang, G. C.; Duan, C. K.; Chen, Y. H.; Yin, M., Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing. Opt Commun 2013, 291, 138-142.
  67. Xu, W.; Zhao, H.; Li, Y. X.; Zheng, L. J.; Zhang, Z. G.; Cao, W. W., Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sensor Actuat B-Chem 2013, 188, 1096-1100.
  68. Wang, X. D.; Wolfbeis, O. S.; Meier, R. J., Luminescent probes and sensors for temperature. Chem Soc Rev 2013, 42 (19), 7834-7869.
  69. Singh, A. K.; Singh, S. K.; Gupta, B. K.; Prakash, R.; Rai, S. B., Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors. Dalton T 2013, 42 (4), 1065-1072.
  70. Shinde, S. L.; Nanda, K. K., Wide-range temperature sensing using highly sensitive green-luminescent ZnO and PMMA-ZnO film as a non-contact optical probe. Angew Chem Int Ed Engl 2013, 52 (43), 11325-8.
  71. Rocha, U.; Jacinto, C.; Silva, W. F.; Guedes, I.; Benayas, A.; Maestro, L. M.; Elias, M. A.; Bovero, E.; van Veggel, F. C. J. M.; Sole, J. A. G.; Jaque, D., Subtissue Thermal Sensing Based on Neodymium-Doped LaF3 Nanoparticles. Acs Nano 2013, 7 (2), 1188-1199.
  72. Rao, X. T.; Song, T.; Gao, J. K.; Cui, Y. J.; Yang, Y.; Wu, C. D.; Chen, B. L.; Qian, G. D., A Highly Sensitive Mixed Lanthanide Metal-Organic Framework Self-Calibrated Luminescent Thermometer. J Am Chem Soc 2013, 135 (41), 15559-15564.
  73. Rao, X.; Song, T.; Gao, J.; Cui, Y.; Yang, Y.; Wu, C.; Chen, B.; Qian, G., A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J Am Chem Soc 2013, 135 (41), 15559-64.
  74. Pandey, A.; Rai, V. K., Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor. Dalton T 2013, 42 (30), 11005-11011.
  75. Miluski, P.; Dorosz, D.; Kochanowicz, M.; Zmojda, J., Optical fibre temperature sensor based on fluorescein and rhodamine codoped polymer layer. Proc Spie 2013, 8903.
  76. Maestro, L. M.; Jacinto, C.; Silva, U. R.; Vetrone, F.; Capobianco, J. A.; Jaque, D.; Sole, J. G., Response to “Critical Growth Temperature of Aqueous CdTe Quantum Dots is Non-negligible for their Application as Nanothermometers”. Small 2013, 9 (19), 3198-3200.
  77. Maestro, L. M.; Haro-Gonzalez, P.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A.; Sole, J. G.; Jaque, D., Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. Nanomedicine-Uk 2013, 8 (3), 379-388.
  78. Maestro, L. M.; Haro-Gonzalez, P.; del Rosal, B.; Ramiro, J.; Caamano, A. J.; Carrasco, E.; Juarranz, A.; Sanz-Rodriguez, F.; Sole, J. G.; Jaque, D., Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale 2013, 5 (17), 7882-7889.
  79. Jaque, D.; Maestro, L. M.; Escudero, E.; Rodríguez, E. M.; Capobianco, J. A.; Vetrone, F.; Juarranz de la Fuente, A.; Sanz-Rodríguez, F.; Iglesias-de la Cruz, M. C.; Jacinto, C.; Rocha, U.; García Solé, J., Fluorescent nano-particles for multi-photon thermal sensing. J Lumin 2013, 133, 249-253.
  80. Haro-González, P.; Ramsay, W. T.; Maestro, L. M.; del Rosal, B.; Santacruz-Gomez, K.; del Carmen Iglesias-de la Cruz, M.; Sanz-Rodríguez, F.; Chooi, J. Y.; Sevilla, P. R.; Bettinelli, M.; Choudhury, D.; Kar, A. K.; Solé, J. G.; Jaque, D.; Paterson, L., Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small 2013, 9 (12), 2162-2170.
  81. Grove, C. A.; Brummer, G. J. A.; Kasper, S.; Zinke, J.; Pfeiffer, M.; Garbe-Schonberg, D., Confounding effects of coral growth and high SST variability on skeletal Sr/Ca: Implications for coral paleothermometry. Geochem Geophy Geosy 2013, 14 (4), 1277-1293.
  82. Gan, Z. X.; Wu, X. L.; Zhang, J. L.; Zhu, X. B.; Chu, P. K., In Situ Thermal Imaging and Absolute Temperature Monitoring by Luminescent Diphenylalanine Nanotubes. Biomacromolecules 2013, 14 (6), 2112-2116.
  83. Ferreira, R. A. S.; Brites, C. D. S.; Vicente, C. M. S.; Lima, P. P.; Bastos, A. R. N.; Marques, P. G.; Hiltunen, M.; Carlos, L. D.; Andre, P. S., Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid. Laser Photonics Rev 2013, 7 (6), 1027-1035.
  84. Eldridge, J. I.; Chambers, M. D., Temperature Sensing Above 1000 degrees C Using Cr-Doped GdAlO3 Spin-Allowed Broadband Luminescence. Aip Conf Proc 2013, 1552, 873-878.
  85. del Rosal, B.; Sun, C.; Loufakis, D. N.; Luc, C.; Jaque, D., Thermal loading in flow-through electroporation microfluidic devices. Lab Chip 2013, 13 (15), 3119-3127.
  86. Debasu, M. L.; Ananias, D.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Rocha, J.; Carlos, L. D., All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er3+ Emission and Blackbody Radiation. Adv Mater 2013, 25 (35), 4868-4874.
  87. Cadiau, A.; Brites, C. D.; Costa, P. M.; Ferreira, R. A.; Rocha, J.; Carlos, L. D., Ratiometric nanothermometer based on an emissive Ln3+-organic framework. ACS Nano 2013, 7 (8), 7213-8.
  88. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 2013, 5 (16), 7572-7580.
  89. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., Thermometry at the nanoscale using lanthanide-containing organic-inorganic hybrid materials. J Lumin 2013, 133, 230-232.
  90. Brites, C.; Pereira, P.; João, N.; Millán, A.; Amaral, V.; Palacio, F.; Carlos, L. A. D., Organic-Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits. Frontiers in Chemistry 2013, 1.
  91. Balamurugan, A.; Reddy, M. L. P.; Jayakannan, M., pi-Conjugated polymer-Eu3+ complexes: versatile luminescent molecular probes for temperature sensing. J Mater Chem A 2013, 1 (6), 2256-2266.
  92. Sedlmeier, A.; Achatz, D. E.; Fischer, L. H.; Gorris, H. H.; Wolfbeis, O. S., Photon upconverting nanoparticles for luminescent sensing of temperature. Nanoscale 2012, 4 (22), 7090-7096.
  93. Raoof, M.; Zhu, C.; Kaluarachchi, W. D.; Curley, S. A., Luciferase-based protein denaturation assay for quantification of radiofrequency field-induced targeted hyperthermia: developing an intracellular thermometer. Int J Hyperthermia 2012, 28 (3), 202-9.
  94. Maestro, L. M.; Haro-González, P.; Iglesias-de la Cruz, M. C.; SanzRodríguez, F.; Juarranz, Á.; Solé, J. G.; Jaque, D., Fluorescent nanothermometers provide controlled plasmonic-mediated intracellular hyperthermia. Nanomedicine-Uk 2012, 8 (3), 379-388.
  95. Lopez, I. S.; Mendonca, A. L.; Fernandes, M.; Bermudez, V. D.; Morgado, J.; Del Pozo, G.; Romero, B.; Cabanillas-Gonzalez, J., Europium complex-based thermochromic sensor for integration in plastic optical fibres. Opt Mater 2012, 34 (8), 1447-1450.
  96. Jaque, D.; Vetrone, F., Luminescence nanothermometry. Nanoscale 2012, 4 (15), 4301-4326.
  97. Haro-Gonzalez, P.; Martinez-Maestro, L.; Martin, I. R.; Garcia-Sole, J.; Jaque, D., High-Sensitivity Fluorescence Lifetime Thermal Sensing Based on CdTe Quantum Dots. Small 2012, 8 (17), 2652-2658.
  98. Haro-Gonzalez, P.; Maestro, L. M.; Trevisani, M.; Polizzi, S.; Jaque, D.; Sole, J. G.; Bettinelli, M., Evaluation of rare earth doped silica sub-micrometric spheres as optically controlled temperature sensors. J Appl Phys 2012, 112 (5).
  99. Dong, B.; Cao, B. S.; He, Y. Y.; Liu, Z.; Li, Z. P.; Feng, Z. Q., Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides. Adv Mater 2012, 24 (15), 1987-1993.
  100. Cui, Y. J.; Xu, H.; Yue, Y. F.; Guo, Z. Y.; Yu, J. C.; Chen, Z. X.; Gao, J. K.; Yang, Y.; Qian, G. D.; Chen, B. L., A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer. J Am Chem Soc 2012, 134 (9), 3979-3982.
  101. Cui, Y.; Xu, H.; Yue, Y.; Guo, Z.; Yu, J.; Chen, Z.; Gao, J.; Yang, Y.; Qian, G.; Chen, B., A luminescent mixed-lanthanide metal-organic framework thermometer. J Am Chem Soc 2012, 134 (9), 3979-82.
  102. Choudhury, D.; Jaque, D.; Rodenas, A.; Ramsay, W. T.; Paterson, L.; Kar, A. K., Quantum dot enabled thermal imaging of optofluidic devices. Lab Chip 2012, 12 (13), 2414-2420.
  103. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., Thermometry at the nanoscale. Nanoscale 2012, 4 (16), 4799-4829.
  104. Brites, C. D.; Lima, P. P.; Silva, N. J.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., Thermometry at the nanoscale. Nanoscale 2012, 4 (16), 4799-829.
  105. Albers, A. E.; Chan, E. M.; McBride, P. M.; Ajo-Franklin, C. M.; Cohen, B. E.; Helms, B. A., Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J Am Chem Soc 2012, 134 (23), 9565-8.
  106. Maestro, L. M.; Jacinto, C.; Silva, U. R.; Vetrone, F.; Capobianco, J. A.; Jaque, D.; Sole, J. G., CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging. Small 2011, 7 (13), 1774-1778.
  107. Hu, Y. C.; Chan, K. H. Y.; Chung, C. Y. S.; Yam, V. W. W., Reversible thermo-responsive luminescent metallo-supramolecular triblock copolymers based on platinum(II) terpyridyl chromophores with unusual aggregation behaviour and red-near-infrared (NIR) emission upon heating. Dalton T 2011, 40 (45), 12228-12234.
  108. Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q., A Triarylboron-Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angew Chem Int Edit 2011, 50 (35), 8072-8076.
  109. Dong, N. N.; Pedroni, M.; Piccinelli, F.; Conti, G.; Sbarbati, A.; Ramirez-Hernandez, J. E.; Maestro, L. M.; Iglesias-de la Cruz, M. C.; Sanz-Rodriguez, F.; Juarranz, A.; Chen, F.; Vetrone, F.; Capobianco, J. A.; Sole, J. G.; Bettinelli, M.; Jaque, D.; Speghini, A., NIR-to-NIR Two-Photon Excited CaF2: Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-Imaging. Acs Nano 2011, 5 (11), 8665-8671.
  110. Vetrone, F.; Naccache, R.; Zamarrón, A.; Juarranz de la Fuente, A.; Sanz-Rodríguez, F.; Martinez Maestro, L.; Martín Rodriguez, E.; Jaque, D.; García Solé, J.; Capobianco, J. A., Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4 (6), 3254-3258.
  111. Maestro, L. M.; Rodríguez, E. M.; Rodríguez, F. S.; la Cruz, M. C. I.-d.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J. A.; Solé, J. G., CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging. Nano Lett 2010, 10 (12), 5109-5115.
  112. Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Adv Mater 2010, 22 (40), 4499-4504.
  113. Brites, C. D.; Lima, P. P.; Silva, N. J.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D., A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv Mater 2010, 22 (40), 4499-504.
  114. Borisov, S. M.; Gatterer, K.; Klimant, I., Red light-excitable dual lifetime referenced optical pH sensors with intrinsic temperature compensation. Analyst 2010, 135 (7), 1711-1717.
  115. Nagl, S.; Stich, M. I. J.; Schaferling, M.; Wolfbeis, O. S., Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature. Anal Bioanal Chem 2009, 393 (4), 1199-1207.
  116. Pedro, R. N.; Kishore, T. A.; Hinck, B. D.; Akornor, J. W.; Dickinson, L.; Roychowdhury, M.; Anderson, J. K.; Monga, M., Comparative analysis of lighted ureteral stents: lumination and tissue effects. J Endourol 2008, 22 (11), 2555-8.
  117. Kruk, M. M.; Starukhin, A. S.; Czerwieniec, R., Temperature-dependent phosphorescence spectra of Pd- and Pt-porphins and their applications. J Porphyr Phthalocya 2008, 12 (11), 1201-1210.
  118. Kamma, I.; Kommidi, P.; Reddy, B. R., Design of a high temperature sensing system using luminescence lifetime measurement. Rev Sci Instrum 2008, 79 (9).
  119. Clarke, D. R., Luminescence sensing of temperature in oxides. Key Eng Mat 2008, 368-372, 1-4.
  120. Uchiyama, S.; Gota, C., [Fluorescent molecular thermometers for bioimaging]. Tanpakushitsu Kakusan Koso 2007, 52 (13 Suppl), 1608-12.
  121. Kruk, M.; Starukhin, A., Molecular thermometer for cryogenic range based on Pd-porphin phosphorescence. International Conference on Lasers, Applications, and Technologies 2007 2007, 6733.
  122. Chambers, M. D.; Clarke, D. R., Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials. Surf Coat Tech 2007, 202 (4-7), 688-692.
  123. Badugu, R.; Tolosa, L.; Kostov, Y.; Rao, G., ANYL 170-Luminescence temperature sensing using ruthenium diimine complexes. Abstr Pap Am Chem S 2007, 234.
  124. Mills, A.; Tommons, C.; Bailey, R. T.; Tedford, M. C.; Crilly, P. J., Luminescence temperature sensing using poly(vinyl alcohol)-encapsulated Ru(bpy)(3)(2+) films. Analyst 2006, 131 (4), 495-500.
  125. Jawhara, S.; Mordon, S., Monitoring of bactericidal action of laser by in vivo imaging of bioluminescent E. coli in a cutaneous wound infection. Lasers Med Sci 2006, 21 (3), 153-9.
  126. Zhang, P.; Osborn, D. J.; Baker, G. L.; Ghosh, R. N., High temperature oxygen sensing using K(2)Mo(6)Cl(14) luminescence. Ieee Sensor 2005, 628-631.
  127. Gentleman, M. M.; Clarke, D. R., Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings. Surf Coat Tech 2005, 200 (5-6), 1264-1269.
  128. Baker, S. N.; McCleskey, T. M.; Baker, G. A., An ionic liquid-based optical thermometer. Acs Sym Ser 2005, 902, 171-181.
  129. Paredi, P.; Kharitonov, S. A.; Hanazawa, T.; Barnes, P. J., Local vasodilator response to mobile phones. Laryngoscope 2001, 111 (1), 159-62.
  130. Liebsch, G.; Klimant, I.; Wolfbeis, O. S., Luminescence lifetime temperature sensing based on sol-gels and poly(acrylonitrile)s dyed with ruthenium metal-ligand complexes. Adv Mater 1999, 11 (15), 1296-+.
  131. Alcala, J. R.; Liao, S. C.; Zheng, J., Real time frequency domain fibreoptic temperature sensor using ruby crystals. Med Eng Phys 1996, 18 (1), 51-56.
  132. Alcala, J. R.; Liao, S. C.; Zheng, J. L., Real-Time Frequency-Domain Fiberoptic Temperature Sensor. Ieee T Bio-Med Eng 1995, 42 (5), 471-476.
  133. Panoff, J. M., Control of a Locus That Is Required for Growth of Anabaena Pcc7120 at Low-Temperature. Curr Microbiol 1993, 27 (5), 273-276.
  134. Samulski, T. V.; Chopping, P. T.; Haas, B., Photoluminescent thermometry based on europium-activated calcium sulphide. Phys Med Biol 1982, 27 (1), 107-14.
  135. Samulski, T.; Shrivastava, P. N., Photo-Luminescent Thermometer Probes – Temperature-Measurements in Microwave Fields. Science 1980, 208 (4440), 193-194.
  136. Jaque, D.; Jacinto, C., Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies. J Lumin.